Digital Circuits ECS 371

Dr. Prapun Suksompong

 prapun@siit.tu.ac.th Lecture 8Office Hours:
BKD 3601-7
Monday 9:00-10:30, 1:30-3:30 Tuesday 10:30-11:30

Announcement

- HW3 posted on the course web site
- Chapter 4: 5(b,d), 26b, 30b, 32a, 34a, 44
- Write down all the steps that you have done to obtain your answers.
- Due date: July 2, 2009 (Thursday)
- Please submit your HW to the instructor 3 minutes BEFORE your class starts.
- Earlier submission is possible. There are two HW boxes in the EC department ($6^{\text {th }}$ floor) for ECS 371. (One for CS. Another one for IT.)

Review

Expression in SOP (Sum-of-Products) Form

$$
A B+C+A B C
$$

Standard
(Canonical Sum)
All variables appear in each product term.

$$
A B C+A B \bar{C}+A \bar{B} C
$$

Note: Each minterm corresponds to one combination of input variables.

K-Map

- Used for simplifying Boolean expressions to their "minimum form." (We haven't talked about this.)
- We have done the following:
- Construct K-map for three or four input variables.
- Determine the minterm (standard product term) represented by each cell in a K-map.
- Map a standard SOP expression (canonical sum) on a Karnaugh map.
- Today
- New concept: Cell Adjacency

K-Map

Convention: We use the following maps to define our K-maps

There are many ways to define the K-map. Once you are familiar with one convention, you may try to work with different convention.

Alternative K-Maps

We will NOT follow this convention.

Ex: Mapping (Canonical Sum)

Map the following expression on an appropriate K-map

Summary

For a canonical sum (SOP expression in standard form):

- A 1 is placed on the K-map for each minterm in the expression.
- Each 1 is placed in a cell corresponding to the minterm that produces it.
- When the canonical sum is completely mapped, there will be a number of 1 s on the K-map equal to the number of minterms in the canonical sum.
- The cells that do not have a 1 are the cells for which the expression is 0 .

Adjacency

Why do we arrange the cells in this "strange" ordering?

Adjacency

- The cells in a K-map are arranged so that there is only a single-variable change between adjacent cells.
- Definition: Cells that differ by only one variable are adjacent.
- Physically, each cell is adjacent to the cells that are immediately next to it on any of its four sides.

- Note that a cell is not adjacent to the cells that diagonally touch any of its comers.

Wrap-around Adjacency (3 Variables)

The cells in the top row are adjacent to the corresponding cells in the bottom row.

Wrap-around Adjacency (4 Variables)

The cells in the top row are adjacent to the corresponding cells in the bottom row and the cells in the outer left column are adjacent to the corresponding cells in the outer right column.

This is called "wrap-around" adjacency because you can think of the map as wrapping around from top to bottom to form a cylinder or from left to right to form a cylinder.

Grouping the 1s

${ }_{A B}{ }^{C}$	00	01	11	10
00	$\bar{A} \bar{B} \bar{C} \bar{D}$	$\bar{A} \bar{B} \bar{C} D$	$\bar{A} \bar{B} C D$	$\bar{A} \bar{B} C \bar{D}$
01	$\bar{A} B \bar{C} \bar{D}$	$\bar{A} B \bar{C} D$	$\bar{A} B C D$	$\bar{A} B C \bar{D}$
11	$A B \bar{C} \bar{D}$	$A B \bar{C} D$	$A B C D$	$A B C \bar{D}$
10	$A \bar{B} \bar{C} \bar{D}$	$A \bar{B} \bar{C} D$	$A \bar{B} C D$	$A \bar{B} C \bar{D}$

$$
\begin{aligned}
& \bar{A} \bar{B} C \bar{D}+\bar{A} B C \bar{D}=\bar{A} C \bar{D}(\bar{B}+B) \\
& =\bar{A} C \bar{D} \\
& \text { Summation of these four } \\
& \text { minterms gives } A \bar{C}
\end{aligned}
$$

The K-map is used to "visualize" the combining theorem.

$$
A B+\bar{A} B=B
$$

Rules: Grouping the 1s

You can group 1s on the K-map according to the following rules

- A group must contain 2^{k} cells.

Each time that we make a group larger, it will cover twice as many cells.

- Each cell in a group must be adjacent to one or more cells in that same group,
- but all cells in the group do not have to be adjacent to each other.
- Always include the largest possible number of 1 s in a group.
- Each of this group is called "prime implicant"

Example:

Find all prime implicants in each K-map.

Prime Implicant to Product Term

- Each prime implicant is a product term
- Composed of all variables that occur in only one form (either uncomplemented or complemented) within the group
- Variables that occur both uncomplemented and complemented within the group are eliminated.
- These are called contradictory variables.

Prime Implicant to Product Term

Turn out that we can read the product term off the K-map directly

Product Term to K-Map

Mapping (SOP)

Map the following expression on a Karnaugh map

Minimal Sum

- Definition: A minimal sum is a SOP expression such that no equivalent SOP expression has fewer product terms, and any equivalent SOP expression with the same number of product terms has at least as many literals.
- Prime-Implicant Theorem:

A minimum sum is a sum of prime implicants

K-Map to Minimal Sum

- Group the cells that have 1 s according to the rules on earlier slide. This creates many prime implicants.
- Each prime implicant creates one product term.
- Each 1 on the map must be included in at least one prime implicant.
- The sum of all the prime implicants of a logic function is called the complete sum.
- It is a legitimate way to realize a logic function.
- It's not always minimal.
- "Minimize the number of prime implicants."
- Add up all the "surviving" product terms

Example:

Find the minimal sum from each K-map.

Example:

Here are all prime implicants.

Example:

We need only these...

Example

Example

Example

Use a K-map to minimize the following expression

$$
X=A \bar{B} C+\bar{A} B C+\bar{A} \bar{B} C+\bar{A} \bar{B} \bar{C}+A \bar{B} \bar{C}
$$

$$
X=\bar{B}+A C
$$

"Don't Care" Input Combinations

- Sometimes the output doesn't matter for certain input combinations.
- For example, the combinations are not allowed in the first place.
- These combinations are called "don't care".
- The "don't care" term can be used to advantage on K-map.
- For each "don't care" term, place an X in the corresponding cell.
- When grouping the 1 s ,
- the Xs can be treated as 1s to make a larger grouping
- or as 0 s if they cannot be used to advantage.

Example

INPUTS				OUTPUT
A	B	C	D	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

(a) Truth table

(b) Without "don't cares" $Y=A \bar{B} \bar{C}+\bar{A} B C D$ With "don't cares" $Y=A+B C D$

Alternative Methods

- Disadvantages of using K-maps
- Not applicable for more than five variables
- Practical only for up to four variables
- Difficult to automated in a computer program
- There are other ways to minimize Boolean functions.
- More practical for more than four variables
- Easily implemented with a computer

1. Quine-McClusky method

- Inefficient in terms of processing time and memory usage

2. Espresso Algorithm

- de facto standard

Canonical Product

- Product-of-Sums (POS) Form

Example: $(A+\bar{B}) \cdot(A+B+C)$

- Standard POP Form (Canonical Product)

Example: $(A+\bar{B}+C) \cdot(A+\bar{B}+\bar{C}) \cdot(A+B+C)$

- Convert expression in POS form into canonical product:

Example

Find the value of X for all possible values of the variables when

$$
X=(A+\bar{B}+C) \cdot(\bar{A}+B+C) \cdot(\bar{A}+\bar{B}+C)
$$

$$
\begin{aligned}
X & =(A+\bar{B}+C) \cdot(\bar{A}+B+C) \cdot(\bar{A}+\bar{B}+C) \\
& =((A+\bar{B}) \cdot(\bar{A}+B) \cdot(\bar{A}+\bar{B}))+C \\
& =((A+\bar{B}) \cdot(\bar{A}+(B \cdot \bar{B})))+C \\
& =((A+\bar{B}) \cdot \bar{A})+C \\
& =(\bar{A} \cdot \bar{B})+C
\end{aligned}
$$

A	B	C	X
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Example

Find the value of X for all possible values of the variables when

$$
X=(A+\bar{B}+C) \cdot(\bar{A}+B+C) \cdot(\bar{A}+\bar{B}+C)
$$

A	B	C	X
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Maxterm

- A sum term in a canonical product is called a maxterm.
- A maxterm is equal to 0 for only one combination of variable values.

$$
\begin{aligned}
& A+\bar{B}+C=0 \text { iff }(A, B, C)=(0,1,0) \\
& A+\bar{B}+\bar{C}=0 \text { iff }(A, B, C)=(0,1,1) \\
& A+B+C=0 \text { iff }(A, B, C)=(0,0,0)
\end{aligned}
$$

- We say that the max term $A+\bar{B}+C$ has a binary value of 010 (decimal 2)
- Maxterm list: $(A+\bar{B}) \cdot(A+B+C)=\prod_{A, B, C}(0,2,3)$

$$
(A+\bar{B}) \cdot(A+B+C)=(A+\bar{B}+C) \cdot(A+\bar{B}+\bar{C}) \cdot(A+B+C)
$$

Minterm/Maxterm \& Truth Table

Row \#	A	B	C	Minterm	Maxterm
0	0	0	0	$\bar{A} \cdot \bar{B} \cdot \bar{C}$	$A+B+C$
1	0	0	1	$\bar{A} \cdot \bar{B} \cdot C$	$A+B+\bar{C}$
2	0	1	0	$\bar{A} \cdot B \cdot \bar{C}$	$A+\bar{B}+C$
3	0	1	1	$\bar{A} \cdot B \cdot C$	$A+\bar{B}+\bar{C}$
4	1	0	0	$A \cdot \bar{B} \cdot \bar{C}$	$\bar{A}+B+C$
5	1	0	1	$A \cdot \bar{B} \cdot C$	$\bar{A}+B+\bar{C}$
6	1	1	0	$A \cdot B \cdot \bar{C}$	$\bar{A}+\bar{B}+C$
7	1	1	1	$A \cdot B \cdot C$	$\bar{A}+\bar{B}+\bar{C}$

Conversion

Row \#	A	B	C	Minterm	Maxterm
0	0	0	0	$\bar{A} \cdot \bar{B} \cdot \bar{C}$	$A+B+C$
1	0	0	1	$\bar{A} \cdot \bar{B} \cdot C$	$A+B+\bar{C}$
2	0	1	0	$\bar{A} \cdot B \cdot \bar{C}$	$A+\bar{B}+C$
3	0	1	1	$\bar{A} \cdot B \cdot C$	$A+\bar{B}+\bar{C}$
4	1	0	0	$A \cdot \bar{B} \cdot \bar{C}$	$\bar{A}+B+C$
5	1	0	1	$A \cdot \bar{B} \cdot C$	$\bar{A}+B+\bar{C}$
6	1	1	0	$A \cdot B \cdot \bar{C}$	$\bar{A}+\bar{B}+C$
7	1	1	1	$A \cdot B \cdot C$	$\bar{A}+\bar{B}+\bar{C}$

$$
\begin{aligned}
\Sigma_{A, B, C}(0,1,2,3) & =\Pi_{A, B, C}(4,5,6,7) \\
\Sigma_{X, Y}(1) & =\Pi_{X, Y}(0,2,3)
\end{aligned}
$$

$\Sigma_{W, X, Y, Z}(0,1,2,3,5,7,11,13)=\Pi_{W, X, Y, Z}(4,6,8,9,10,12,14,15)$

