Digital Circuits ECS 371

Dr. Prapun Suksompong prapun@siit.tu.ac.th Lecture 8

ECS371.PRAPUN.COM

Office Hours: BKD 3601-7 Monday 9:00-10:30, 1:30-3:30 Tuesday 10:30-11:30

Announcement

- HW3 posted on the course web site
 - Chapter 4: 5(b,d), 26b, 30b, 32a, 34a, 44
 - Write down all the steps that you have done to obtain your answers.
 - Due date: July 2, 2009 (Thursday)
 - Please submit your HW to the instructor 3 minutes BEFORE your class starts.
 - Earlier submission is possible. There are two HW boxes in the EC department (6th floor) for ECS 371. (One for CS. Another one for IT.)

K-Map

- Used for simplifying Boolean expressions to their "minimum form." (We haven't talked about this.)
- We have done the following:
 - Construct K-map for three or four input variables.
 - Determine the minterm (standard product term) represented by each cell in a K-map.
 - Map a standard SOP expression (canonical sum) on a Karnaugh map.
- Today
 - New concept: Cell Adjacency

K-Map

Convention: We use the following maps to define our K-maps

There are many ways to define the K-map. Once you are familiar with one convention, you may try to work with different convention.

Alternative K-Maps

Ex: Mapping (Canonical Sum)

Map the following expression on an appropriate K-map

Summary

For a canonical sum (SOP expression in standard form):

- A 1 is placed on the K-map for each minterm in the expression.
- Each 1 is placed in a cell corresponding to the minterm that produces it.
- When the canonical sum is completely mapped, there will be a number of 1s on the K-map equal to the number of minterms in the canonical sum.
- The cells that do not have a 1 are the cells for which the expression is 0.

Adjacency

Why do we arrange the cells in this "strange" ordering?

Adjacency

- The cells in a K-map are arranged so that there is only a single-variable change between adjacent cells.
- **Definition**: Cells that differ by only one variable are **adjacent**.
 - Physically, each cell is adjacent to the cells that are immediately next to it on any of its four sides.
- Note that a cell is not adjacent to the cells that diagonally touch any of its comers.

Wrap-around Adjacency (3 Variables)

The cells in the top row are adjacent to the corresponding cells in the bottom row.

Wrap-around Adjacency (4 Variables)

Why is this adjacency concept useful?

The cells in the top row are adjacent to the corresponding cells in the bottom row **and** the cells in the outer left column are adjacent to the corresponding cells in the outer right column.

This is called "wrap-around" adjacency because you can think of the map as wrapping around from top to bottom to form a cylinder or from left to right to form a cylinder.

Rules: Grouping the 1s

You can group 1s on the K-map according to the following rules Each time that we make a group larger, it will cover twice as many cells.

- A group must contain 2^k cells.
- Each cell in a group must be *adjacent* to one or more cells in that same group,
 - but all cells in the group do not have to be adjacent to each other.
- Always include the largest possible number of 1s in a group.
 - Each of this group is called "prime implicant" AB

Find all prime implicants in each K-map.

Prime Implicant to Product Term

- Each prime implicant is a product term
 - Composed of all variables that occur in only one form (either uncomplemented or complemented) within the group
 - Variables that occur both uncomplemented **and** complemented within the group are eliminated.
 - These are called **contradictory variables**.

Prime Implicant to Product Term

Turn out that we can read the product term off the K-map directly

Product Term to K-Map

Mapping (SOP)

Map the following expression on a Karnaugh map

Minimal Sum

- **Definition**: A **minimal sum** is a SOP expression such that no equivalent SOP expression has fewer product terms, and any equivalent SOP expression with the same number of product terms has at least as many literals.
- Prime-Implicant Theorem:

A minimum sum is a sum of prime implicants

K-Map to Minimal Sum

- Group the cells that have 1s according to the rules on earlier slide. This creates many prime implicants.
 - Each prime implicant creates one product term.
 - Each 1 on the map must be included in at least one prime implicant.
 - The sum of all the prime implicants of a logic function is called the **complete sum**.
 - It is a legitimate way to realize a logic function.
 - It's not always minimal.
- "Minimize the number of prime implicants."
- Add up all the "surviving" product terms

Find the minimal sum from each K-map.

Here are all prime implicants.

We need only these...

27

Use a K-map to minimize the following expression $X = A\overline{B}C + \overline{A}BC + \overline{A}BC + \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C}$

 $X = \overline{B} + AC$

"Don't Care" Input Combinations

- Sometimes the output doesn't matter for certain input combinations.
 - For example, the combinations are not allowed in the first place.
- These combinations are called "don't care".
- The "don't care" term can be used to advantage on K-map.
- For each "don't care" term, place an X in the corresponding cell.
- When grouping the 1s,
 - the Xs can be treated as 1s to make a larger grouping
 - or as 0s if they cannot be used to advantage.

l	NP	UTS	5	OUTPUT
A	B	С	D	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	Х
1	1	0	0	Х
1	1	0	1	Х
1	1	1	0	Х
1	1	1	1	Х

Don't cares

(b) Without "don't cares" $Y = A\overline{B}\overline{C} + \overline{A}BCD$ With "don't cares" Y = A + BCD

(a) Truth table

Alternative Methods

- Disadvantages of using K-maps
 - Not applicable for more than five variables
 - Practical only for up to four variables
 - Difficult to automated in a computer program
- There are other ways to minimize Boolean functions.
 - More practical for more than four variables
 - Easily implemented with a computer
 - 1. Quine-McClusky method
 - Inefficient in terms of processing time and memory usage
 - 2. Espresso Algorithm
 - de facto standard

Canonical Product

- Product-of-Sums (POS) Form Example: $(A + \overline{B}) \cdot (A + B + C)$
- Standard POP Form (Canonical Product) Example: $(A + \overline{B} + C) \cdot (A + \overline{B} + \overline{C}) \cdot (A + B + C)$
- Convert expression in POS form into canonical product:

Find the value of *X* for all possible values of the variables when

$$X = \left(A + \overline{B} + C\right) \cdot \left(\overline{A} + B + C\right) \cdot \left(\overline{A} + \overline{B} + C\right)$$

$$X = (A + \overline{B} + C) \cdot (\overline{A} + B + C) \cdot (\overline{A} + \overline{B} + C)$$
$$= ((A + \overline{B}) \cdot (\overline{A} + B) \cdot (\overline{A} + B)) + C$$
$$= ((A + \overline{B}) \cdot (\overline{A} + (B \cdot \overline{B}))) + C$$
$$= ((A + \overline{B}) \cdot \overline{A}) + C$$
$$= (\overline{A} \cdot \overline{B}) + C$$

Find the value of *X* for all possible values of the variables when

$$X = \left(A + \overline{B} + C\right) \cdot \left(\overline{A} + B + C\right) \cdot \left(\overline{A} + \overline{B} + C\right)$$

Maxterm

- A sum term in a canonical product is called a **maxterm**.
- A maxterm is equal to 0 for only one combination of variable values.

$$A + B + C = 0 \text{ iff } (A, B, C) = (0, 1, 0)$$
$$A + \overline{B} + \overline{C} = 0 \text{ iff } (A, B, C) = (0, 1, 1)$$
$$A + B + C = 0 \text{ iff } (A, B, C) = (0, 0, 0)$$

- We say that the max term A + B + C has a binary value of 010 (decimal 2)
- Maxterm list: $(A + \overline{B}) \cdot (A + B + C) = \prod_{A,B,C} (0,2,3)$ $(A + \overline{B}) \cdot (A + B + C) = (A + \overline{B} + C) \cdot (A + \overline{B} + \overline{C}) \cdot (A + B + C)$

Minterm/Maxterm & Truth Table

Row #	A	В	С	Minterm	Maxterm
0	0	0	0	$\overline{A} \cdot \overline{B} \cdot \overline{C}$	A + B + C
1	0	0	1	$\overline{A} \cdot \overline{B} \cdot C$	$A + B + \overline{C}$
2	0	1	0	$\overline{A} \cdot B \cdot \overline{C}$	$A + \overline{B} + C$
3	0	1	1	$\overline{A} \cdot B \cdot C$	$A + \overline{B} + \overline{C}$
4	1	0	0	$A \cdot \overline{B} \cdot \overline{C}$	$\overline{A} + B + C$
5	1	0	1	$A \cdot \overline{B} \cdot C$	$\overline{A} + B + \overline{C}$
6	1	1	0	$A \cdot B \cdot \overline{C}$	$\overline{A} + \overline{B} + C$
7	1	1	1	$A \cdot B \cdot C$	$\overline{A} + \overline{B} + \overline{C}$

Conversion

Row #	Α	В	С	Minterm	Maxterm
0	0	0	0	$\overline{A} \cdot \overline{B} \cdot \overline{C}$	A + B + C
1	0	0	1	$\overline{A} \cdot \overline{B} \cdot C$	$A + B + \overline{C}$
2	0	1	0	$\overline{A} \cdot B \cdot \overline{C}$	$A + \overline{B} + C$
3	0	1	1	$\overline{A} \cdot B \cdot C$	$A + \overline{B} + \overline{C}$
4	1	0	0	$A \cdot \overline{B} \cdot \overline{C}$	$\overline{A} + B + C$
5	1	0	1	$A \cdot \overline{B} \cdot C$	$\overline{A} + B + \overline{C}$
6	1	1	0	$A \cdot B \cdot \overline{C}$	$\overline{A} + \overline{B} + C$
7	1	1	1	$A \cdot B \cdot C$	$\overline{A} + \overline{B} + \overline{C}$

$$\begin{split} \Sigma_{\mathsf{A},\mathsf{B},\mathsf{C}}(0,1,2,3) &= & \prod_{\mathsf{A},\mathsf{B},\mathsf{C}}(4,5,6,7) \\ & & \Sigma_{\mathsf{X},\mathsf{Y}}(1) &= & \prod_{\mathsf{X},\mathsf{Y}}(0,2,3) \\ \Sigma_{\mathsf{W},\mathsf{X},\mathsf{Y},\mathsf{Z}}(0,1,2,3,5,7,11,13) &= & \prod_{\mathsf{W},\mathsf{X},\mathsf{Y},\mathsf{Z}}(4,6,8,9,10,12,14,15) \end{split}$$